How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT

نویسندگان

  • Jakob S. Jørgensen
  • Emil Y. Sidky
چکیده

We introduce phase-diagram analysis, a standard tool in compressed sensing, to the X-ray CT community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In compressed sensing a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers to questions of undersampling: First we demonstrate that there are cases where X-ray CT empirically performs comparable with an optimal compressed sensing strategy, namely taking measurements with Gaussian sensing matrices. Second, we show that, in contrast to what might have been anticipated, taking randomized CT measurements does not lead to improved performance compared to standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means of total-variation regularization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-...

متن کامل

Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized x-ray CT

We study recoverability in fan-beam computed tomography (CT) with sparsity and total variation priors: how many underdetermined linear measurements suffice for recovering images of given sparsity? Results from compressed sensing (CS) establish such conditions for, e.g., random measurements, but not for CT. Recoverability is typically tested by checking whether a computed solution recovers the o...

متن کامل

Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT.

The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and in...

متن کامل

Empirical Average-case Relation between Undersampling and Sparsity in X-ray Ct.

In X-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such reconstruction methods is inspired by recent progress in compressed sensing (CS). However, the CS framework provides neither guarantees of accurate CT reconstruction, nor any relation between...

متن کامل

Ternary Phase Diagram Modeling of Chiral Medetomidine Salts Using NRTL-SAC Model

Experimental determination of solubility and ternary phase diagram of chiral compound are of tedious and time consuming tasks, and in many cases, there is not enough experimental data for different enantiomeric compositions to access the experimental ternary phase diagram. Using thermodynamic models with predictive capability, having less dependency on experimental data, affords a great advanta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1412.6833  شماره 

صفحات  -

تاریخ انتشار 2014